Secciones y Capítulos Ciclo celular. División y muerte de las células Glucólisis y respiración Los seres vivos y la energía Fotosíntesis, luz y vida Información genética La unidad de la Vida

Fotosíntesis luz y vida

La naturaleza de la luz
La clorofila
y otros pigmentos

Las membranas
fotosintéticas:
los tilacoides

Las etapas de la
fotosíntesis

Reacciones que capturan
energía

Reacciones de fijación
de carbono

Los productos de
la fotosíntesis

Capítulo 9. Fotosíntesis, luz y vida energía

Las etapas de la fotosíntesis

La evidencia de que la fotosíntesis puede ser influenciada por distintos factores llevó a distinguir una etapa dependiente de la luz, la etapa llamada de reacciones "lumínicas", y una etapa enzimática, independiente de la luz, las reacciones "oscuras". Los términos reacciones "lumínicas" y "oscuras" han creado mucha confusión pues, aunque las reacciones "oscuras" no requieren de la luz como tal, sino solamente de los productos químicos de las reacciones "lumínicas", pueden ocurrir tanto en la luz como en la oscuridad. Más aun, trabajos recientes han mostrado que varias enzimas que controlan reacciones "oscuras" claves son reguladas indirectamente por la luz. Como resultado, estos términos han caído en desuso y están siendo reemplazados por vocablos que describen más precisamente los procesos que ocurren durante cada etapa de la fotosíntesis: las reacciones que capturan energía y las reacciones de fijación del carbono.

En la primera etapa de la fotosíntesis, la luz es absorbida por las moléculas de clorofila a §, que están compactadas de un modo especial en las membranas tilacoides. Los electrones de las moléculas de clorofila a son lanzados a niveles energéticos superiores, y, en una serie de reacciones, su energía adicional es usada para formar ATP § a partir de ADP § y para reducir una molécula transportadora de electrones conocida como NADP+. El NADP+ es muy semejante al NAD+ y también se reduce por la adición de dos electrones y de un protón, formando NADPH. Sin embargo, los papeles biológicos de estas moléculas son notablemente distintos. El NADH generalmente transfiere sus electrones a otros transportadores de electrones, que continúan transfiriéndolos en pasos discretos a niveles de energía sucesivamente más bajos.

Esquema de la molécula de NADP+.

En el curso de esta transferencia de electrones se forman moléculas de ATP. En contraste, el NADPH proporciona energía directamente a los procesos biosintéticos de la célula que requieren grandes ingresos de energía. En esta primera etapa de la fotosíntesis, también se escinden moléculas de agua, suministrando electrones que reemplazan a los que han sido lanzados desde las moléculas de clorofila a. La escisión de las moléculas de agua es la causa de que se forme oxígeno libre, que difunde hacia el exterior.

En la segunda etapa de la fotosíntesis, el ATP y el NADPH formados en la primera etapa se utilizan para reducir el carbono del dióxido de carbono a un azúcar simple. Así, la energía química almacenada temporalmente en las moléculas de ATP y de NADPH se transfiere a moléculas adecuadas para el transporte y el almacenamiento de energía en las células de las algas o en el cuerpo de las plantas. La resultante de este proceso es pues la formación de un esqueleto de carbono, a partir del cual pueden construirse luego otras moléculas orgánicas. La incorporación inicial de CO2 en compuestos orgánicos se conoce como fijación del carbono. Los pasos por los cuales se lleva a cabo, llamados las reacciones de fijación del carbono §, ocurren en el estroma del cloroplasto.

Resumen de las etapas de la fotosíntesis
  Condiciones ¿En dónde? ¿Qué ocurre aparentemente? Resultados
Reacciones que Capturan energía Luz Tilacoides La luz que incide sobre el Fotosistema II lanza electrones cuesta arriba. Estos electrones son reemplazados por electrones de moléculas de agua que, al escindirse, liberan O2. Los electrones luego pasan cuesta abajo, a lo largo de una cadena de transporte de electrones, al Fotosistema I y de éste -nuevamente cuesta abajo- al NADP, que se reduce formando NADPH. Como resultado de este proceso, se forma un gradiente de potencial electroquímico merced al cual se produce ATP a través de un mecanismo quimiosmótico La energía de la luz se convierte en energía química que se almacena en enlaces de ATP y NADPH
Reacciones de fijación de carbono No requieren luz, aunque algunas enzimas son reguladas por ella Estroma Ciclo de Calvin. El NADP y el ATP formados en las reacciones que capturan energía lumínica se utilizan para reducir el dióxido de carbono. El ciclo produce gliceraldehído fosfato, a partir del cual puede formarse glucosa y otros compuestos orgánicos La energía química del ATP y del NADPH se usa par incorporar carbono a moléculas orgánicas

Esquema global de la fotosíntesis.

 

Autoevaluación del capítulo 9

Capítulos relacionados

Copyright © Editorial Médica Panamericana